Delay Differential Equations: Theory, Applications and New Trends (DDEs-TANTs)

Workshop from 3–4 Oct., 2018, United Arab Emirates University, Al-Ain, UAE

Book of Abstracts

United Arab Emirates University

College of Science
Department of Mathematical Sciences
UAE
3–4 October, 2018
Contents

1 Organizing Committee 1

2 Workshop Overview 1

3 Dedication 2

4 Keynote Speakers 2

5 Abstracts 3

6 List of Participants 34

1 Organizing Committee

1. Prof. Fathalla A. Rihan (Chair, UAEU), Email: frihan@uaeu.ac.ae
2. Dr. Nasser Al-Salti (SQU, OMAN)
3. Prof. Mohamed Syam (UAEU)
4. Dr. Abdessamad Tridane (UAEU)
5. Dr. Sehjeong Kim (UAEU)

Logistic Committee:

1. Dr Youssef El-Khatib
2. Dr. Muhammad Imran
3. Ms. Hebatallah J. Alsakaji (PhD student, UAEU)

2 Workshop Overview

Recently, there has been increasing interest related to the theory of delay differential equations (DDEs), due to their important applications in physics, biology, ecology, and physiology. The main objective of this well-focused workshop (DDEs-TANTs) is to provide an opportunity to study the new trends and analytical insights of the delay differential equations, existence and uniqueness of the solutions, boundedness and persistence, oscillatory behavior of the solutions, stability and
bifurcation analysis, parameter estimations and sensitivity analysis, and numerical investigations of solutions. Potential topics include but are not limited to the following: (i) Development of novel theories or improvement to existing theories on delay differential equations; (ii) Development of novel numerical approaches for delay differential equations; (iii) Stability, sensitivity analysis and bifurcation analysis of time delay models; (iv) Optimal control of nonlinear delay differential systems.

The scientific program of the workshop consists of 50-minute plenary lectures, 30-minute invited lectures and 20-minute contributed talks.

The selected papers presented at DDEs-TANRs workshop will be published in a special issue of the journal “Discrete & Continuous Dynamical Systems - S (DCDS-S)” one of the American Institute of Mathematical Series.

3 Dedication

This workshop and special issue are dedicated to the memory of Professor Christopher T. H. Baker (1939–2017).

4 Keynote Speakers

1. Prof. Gennady Bocharov, Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia;
2. Prof. Yang Kuang, School of Math and Statistical Sciences, Arizona State University, USA;
3. Prof. Radouane Yafia, Ibn Zohr University, Morocco.

Scientific Committee:

1. Prof. Fathalla A. Rihan (UAE)
2. Prof. G. Bocharov (Russia)
3. Prof. Yang Kuang (USA)
4. Prof Hongjiong Tian (China)
5. Prof. Haydar Akca (UAEU)
6. Prof. Ephraim Agyingi (USA)
7. Prof. Radouane Yafia (Morocco)
8. Prof. Nasser Sweilam (Egypt)
9. Dr. I. M. Elmojtaba (Oman)
10. Prof. Cemil Tunc (Turky)
5 Abstracts

Delay differential equations for modelling and control of virus infection dynamics

G. Bocharov\(^1\)

\(^1\) Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russian Federation

Email: bocharov@m.inm.ras.ru

Abstract

Systems of delay differential equations (DDE) are widely used for studying the dynamics of virus infections and immune responses as individual models or building blocks of hybrid multi-scale models \[\text{[1]}\]. Virus diseases are characterized by a variety of courses and outcomes. Understanding the mechanisms of chronic infections and elaborating approaches to their treatment is central to mathematical immunology. Effective treatment of infections (e.g., HIV) requires application of multiple drugs acting on the virus- and the host organism physiology. Earlier, for the DDE model of infectious disease Guri I. Marchuk proposed an approach to cure the chronic infections via perturbing the respective steady states. We present a computational approach to designing multi-modal perturbations using the so called, optimal disturbances \[2\]. The optimal disturbances of the steady states are computed by maximizing the perturbation-induced response. The control approach is illustrated for a multi-stable DDE system modeling the experimental LCMV infection. The optimal disturbances of high viral load steady state driving it to a low viral load steady state are computed. Comparison of the optimal disturbances obtained using either the \(L_2\) or \(W_{2,2}\) norm is presented \[3\]. It is argued that optimal disturbances computed using the Sobolev norm are superior for designing multi-modal therapies.

The research was funded by the Russian Science Foundation (Grant no. 18-11-00171).

References

Oscillatory dynamics of an intravenous glucose tolerance test model with delay interval

Y. Kuang

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, USA
Email: kuang@asu.edu

Abstract

Type 2 diabetes mellitus (T2DM) has become prevalent pandemic disease largely due to the modern life style. The intravenous glucose tolerance test (IVGTT) is an effective protocol to determine the insulin sensitivity, glucose effectiveness and pancreatic -cell functionality, through the analysis and parameter estimation of a proper differential equation model. In this talk we propose a novel approach to model the time delay in IVGTT modeling. This approach uses two parameters to simulate not only both discrete time delay and distributed time delay in the past interval, but also the time delay distributed in a past sub-interval. Longer time delay, either a discrete or distributed delay, often destabilize a system. This may not be true for time delay over a sub-interval. We present analytically some basic model properties which are desirable biologically and mathematically. We show that this relatively simple model provides good fit to fluctuating patient data sets and reveals some intriguing dynamics. Moreover, our numerical simulation results indicate that our model may remove the defect in well known Minimal Model which often overestimates the glucose effectiveness index.

References

Hopf Bifurcation in Delay Differential Equations and Applications

R. Yafia

Department of Mathematics, Ibn Zohr University, CST Ait Melloul, Agadir, Morocco
Email: r.yafia@uiz.ac.ma

Abstract

This talk is concerned with the Hopf-bifurcation phenomenon in delayed differential equations, which occurs naturally in biology, ecology and physics etc. Based on the reduction of the abstract delay differential equation to a two-dimensional system via the variation of constant formula and the center manifold Theorem and estimating the distance between solutions of the original equation and the bifurcating periodic solutions, we estimate the stability region of bifurcating branch. Considering time delay as a parameter of bifurcation in a delayed system of differential equations which modeling the interaction between two species in population dynamics. We analyze the local stability/instability of the possible equilibrium points and the occurrence of Hopf bifurcation for some critical value of time delay. In the end, we prove the stability/instability of the bifurcating periodic solutions via normal form Theory and center manifold Theorem.

References

Qualitative and Quantitative Features of Delay Differential Equations in Biosciences

Fathalla A. Rihan

1Department of Mathematical Sciences, College of Science, UAE University, 15551, Al Ain, UAE
Email: frihan@uaeu.ac.ae

Abstract

Delay differential equations (DDEs) are a class of differential equations that have received considerable attention and been shown to model many real life problems, traditionally formulated by systems of ordinary differential equations (ODEs), more naturally and more accurately. Such class of DDEs are widely used for analysis and predictions of systems with memory such as population dynamics, epidemiology, immunology, physiology, neural networks and other biological and physical systems with memory. The aim of this talk is to provide a wide range of DDEs and show that they have a richer mathematical framework for the analysis of dynamical systems. We present suitable numerical techniques for solving the forward and backward problems of DDes. Sensitivity analysis is also investigated for DDEs.

References

Continuous Block for Ordinary and Delay Differential Equations

H. Tian

Department of Mathematics, Shanghai Normal University, Shanghai, China

Abstract

Continuous numerical methods have many applications in the numerical solution of discontinuous ODEs, DDEs, NDDEs, IDEs, etc. We are concerned with continuous extensions for the discrete approximate solutions of ODEs generated by block methods. Existence, uniqueness, convergence and stability of the continuous extensions for ODEs are discussed. As an application, we adopt the continuous methods to solve DDEs and establish their numerical analysis. Several numerical experiments are given to illustrate the performance of the continuous block methods.

References

Delay differential equations: a case study in malaria transmission dynamics

Ephraim Agyingi

School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York, USA
Email: eoasma@rit.edu

Abstract

We consider coupled systems of delay differential equations arising from a mathematical model of the transmission dynamics of malaria species. We analyze the equilibria of the system for stability and bifurcation. Using the reproduction number of the system as a threshold parameter, we ascertain global asymptotic stability for the disease free equilibrium, stability switches and Hopf bifurcations for the non-disease free equilibrium.

References

Delay Differential Model with Optimal Control for a Cancer Treatment Based on Synergy Between Anti-angiogenic and Immune Cell Therapies

N.H. Sweilam¹, F.A. Rihan², S. M. El-Mekhlafi³

¹Department of Mathematics, Faculty of Science, Cairo University, Egypt
²Department of Mathematical Sciences, College of Science, UAE University, 15551, Al Ain, UAE
³Department of Mathematics, Faculty of Education, Sana’a University, Yemen
Email: nsweilam@sci.cu.edu.eg

Abstract

In this paper, an optimal control problem for a novel nonlinear mathematical model with time-delay for cancer treatment based on synergy between anti-angiogenic and immune cell therapies is presented. The governed model consists of eighteen fractional-order delay differential equations, where the fractional derivative is defined in the Caputo sense. A discrete time-delay is incorporated to represent the time required for immune system to interact with tumor, and fractional-order derivative is consider to reflect the memory and hereditary properties in the process. Two control variables for immunotherapy and anti-angiogenic therapy are considered to reduce the load of cancer cells. Necessary and sufficient conditions that guarantee the existence and the uniqueness for the solution of the control problem have been considered. Some numerical simulations are given to validate the theoretical results.
Stability analysis of multi-valued neural networks with time delays

R. Rakkiyappan1

1 Department of Mathematics, Bharathiar University, Tamilnadu, India
Email: rakkigru@gmail.com

Abstract

Neural networks with values in multidimensional domains have been intensively studied over the last few years, because of their immense potentials in application perspective. For a complex-valued neural networks (CVNNs), the main challenge is the choice of activation functions. In a real-valued neural networks (RVNNs), the node activation functions is usually chosen to be a smooth, bounded and non constant function. There is no problem in selecting a real valued functions that satisfies these type of requirements. In a CVNNs any regular analytic function cannot be bounded unless it reduces to a constant. That is to say, the activations in CVNNs cannot be both bounded and analytic. Therefore, the activations are main challenge for CVNNs. Quaternion does not meet commutative law with respect to multiplication, so the quaternion is much harder than that of other networks like RVNNs, CVNNs. Quaternion-valued neural networks (QVNNs) generic extension of RVNNS or CVNNs. More recently, the octonion-valued neural networks (OVNNs) gains its attention since the octonian algebra is a different generalization of the complex and quaternion algebra with an 8-dimensional normed division algebra that can be defined over the field of real numbers. To avoid the non associativity of the octonions and the non commutativity of the quaternion, the OVNNs model is decomposed into four complex-valued systems, using the Cayley-Dickson construction method. The existence of time delays frequently causes oscillation, divergence in neural networks. Since the time delay dependent results are looser than the time delay independent ones when the delay are small. So it is necessary to propose the time delay dependent stability results. For different classes of activation functions, different approaches are necessary to analyze the relevant neural networks. Some new sufficient delay-dependent stability criteria are established to ensure the stability of equilibrium point for the addressed neural networks by constructing an appropriate Lyapunov-Krasovskii functionals (LKF). The obtained stability criteria are established in the form of LMIs. Finally, numerical simulation results are provided to illustrate the validity of the theoretical results.
Characteristic functions of oscillatory functional
differential equations of mixed type

Md. Abdul Malique¹

¹Department of Mathematics, University of Hafr Al Batin, KSA
Email: amalique@uohb.edu.sa

Abstract

In this paper we study characteristic functions of linear homogeneous functional differential equations of mixed type. Our interest is in the qualitative properties of characteristics functions of functional differential equations of mixed type. The motivation of the work is to study oscillatory and non-oscillatory solutions of functional differential equations. Characteristic function is a key tool of an oscillatory or non-oscillatory solution. We shall consider a basic differential equations of mixed type of the form

\[y'(t) = \sum_{k=-1, j=1}^{1,3} b_j y(t + k), \]

where \(y(t) \in \mathcal{R}, k \in \mathcal{R}, k \in [-1, 1], b \in \mathcal{R}, b > 0, j > 0, j \in [1, 3]. \) We conclude with our study and further work.

References

Existence of Periodic Solutions for the Discrete-Time Counterpart of a Neutral-Type Cellular Neural Network with Time-Varying Delays and Impulses

H. Akca1 and V. Covachev2*

1 Department of Applied Sciences and Mathematics, Collage of Arts and Sciences, Abu Dhabi University, Abu Dhabi, UAE
2 Department of Mathematical Sciences, Bulgarian Academy of Science, Sofia, Bulgaria
haydar.akca@adu.ac.ae (* Corresponding author: Haydar Akca)

Abstract

From the mathematical point of view, a cellular neural network (CNN) can be characterized by an array of identical nonlinear dynamical systems called cells (neurons) that are locally interconnected. Using the semi-discretization method, in the present paper a discrete-time counterpart of a neutral-type CNN with time-varying delays and impulses is constructed. Sufficient conditions for the existence of periodic solutions of the discrete-time system thus obtained are found by using the continuation theorem of coincidence degree theory. Over the past two decades neural networks have been widely studied since they have been successfully applied to various processing problems such as optimization, image processing, associative memory and many other fields. Different types of applications depend on the dynamical behaviors of the neural networks. Cellular neural networks (CNNs) were introduced in the 1980s by Chua and Yang. Since then, many researchers have done extensive and interesting works on this subject because of its potential applications in real-life problems such as signal processing, pattern recognition, chemical processes, nuclear reactors, biological systems, static image processing, associative memories, optimization problems and so on.

References

Oscillation criteria for second-order quasi-linear neutral functional differential equation

Osama Mooaz1 and Omar Bazighifan2

1Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
2Department of Mathematics, Faculty of Education, Hadhramout University, Yemen
Email: o_moaaz@mans.edu.eg

Abstract

In this work, new sufficient conditions for oscillation of second-order quasi-linear neutral functional differential equation are established. In numerous applications in biology, electrical engineering or physiology, the dependence on the past appears naturally. Differential equations with delay appears in modeling of these natural phenomena. One objective of our paper is to further simplify and complement some well-known results which were published recently in the literature. Firstly, we improve results of Liu et al. (2012) so that the condition guarantee that all solutions are oscillatory, and without imposing restrictions on the derivatives of $p(t)$, $\tau(t)$. As well, we simplify results of Saker [2010] and Wu et al. (2016) by obtaining criteria ensure oscillation without verifying the extra conditions. In order to support our results, we introduce illustrating example.

References

Qualitative analysis of delayed SIR epidemic model with a saturated incidence rate

Mohamed-Naim Y. Anwar1, Hebatallah J Alsakaji2, Fathalla A. Rihan2

1 Faculty of Engineering, Pharos University in Alexandria, Egypt
2 Department of Mathematical Sciences, College of Science, UAE University, 15551, Al Ain, UAE

Email: mohamed.naeem@pua.edu.eg

Abstract

This work is concerned a delayed SIR epidemic model in which the susceptibles are assumed to satisfy the logistic equation and the incidence term is of saturated form with the susceptible. We investigate the qualitative behaviour of the model and find the conditions that guarantee the asymptotic stability of corresponding steady states. We present the conditions in the time lag in which the DDE model is stable. Hopf bifurcation analysis is also addressed. Numerical simulations are provided in order to illustrate the theoretical results and gain further insight into the behaviour of this system.
Partial differential equations with delay term

M. Yebdri\(^1\)* and H. Harraga\(^1\)

\(^1\) Department of Mathematics, University of Tlemcenn, Tlemcen, Algeria

m_yebdri@mail.univ-temcen.dz (*Corresponding author: Mustapha Yebdri)

Abstract

The theory of differential equations with delay occupies an important place in the development of the theory of infinite dimensional dynamical systems. This theory covers ordinary and partial differential equations with delay(\cite[5]{1}). Comparing to functional differential equations, there are a few works dealing with partial differential equations with delay(see\cite[4]{1}, \cite[5]{1}). Even if the theory of functional analysis (see \cite[1, 2]{1}) allow us to study a wide class of partial differential equations, the literature sources of fundamental facts and approaches for partial differential equations with delay term are very few \cite[1, 2, 3]{1}.

In this talk we establish the existence of weak solutions to a class of partial differential equation with delay which involve a nonlinear delay. For this one proceed by the compacity method i.e. we construct approximate solutions by reduction to the finite dimensional, for example by Galerkin method. So we obtain the existence of approximate solutions using an existence theorem of solution of a system of ordinary differential equations. After, one go to the limit on the dimension (see \cite[5]{1}).

References

\[2\] H.Brezis, Analyse fonctionnelle : théorie et Application, Université Pierre et Marie Curie et Ecole Polytechnique, 2ère édition, MASSON Paris New York Barcelone Milan Mexico 1987.

\[4\] A. V. Rezounenko, On a class of PDEs with nonlinear distributed in space and time state-dependent delay term, Department of Mechanics and Mathematics, Kharkov University,4, Svobody Sqr., Kharkov, 61077, Ukraine, 2008.

©DDEs-TANTs

Stability and numerical simulations for an SIR epidemic model with distributed delay and vaccination

A. ELAZZOUZI1*, A. LAMRANI ALAOUI2 and A. M. TILIOUA2

1 Department of MPI, University of Sidi Mouhamed Ben Abdellah, FP Taza, LSI Laboratory, Morocco
2 Department of Mathematics, University of Moulay Isma\"il, FST Errachidia, M2I Laboratory, MAMCS Group, Morocco

abdelhai.elazzouzi@usmba.ac.ma (* Corresponding author: A. ELAZZOUZI)

Abstract

This work is concerned with the global dynamics of an SIR epidemic model with a wide class of generalized nonlinear incidence rate, distributed delay and vaccination. By constructing a Lyapunov functionals, we show that the disease free equilibrium state is globally asymptotically stable when the basic reproduction number R_0 is less than or equal to one and the disease endemic equilibrium is globally asymptotically stable when R_0 is greater than one. We provide a numerical simulations to illustrate the effect of vaccination on the model. It is shown, when the basic reproduction number for vaccination-free model $R_0 > 1$ that the disease of the SIR model proposed in [3] can be controlled but it can not be eradicated. Here, in this work, we give an example in which for certain values of the vaccination parameter p the disease will die out even if $R_0 > 1$. In other side, we compare numerical results of the distributed delay model and the discrete time delay model.

References

Effect of CTL and antibody immune responses on the virus dynamics with both virus-to-cell and cell-to-cell transmissions and Holling type-II

Ahmed M. Elaiw and Shafeek A. Ghaleb

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
E-mail: shafeekye2@gmail.com

Abstract

Mathematical modeling and analysis of viral infection models have attracted the interest of several researchers during the last decades. These works can help researchers for better understanding the viral dynamical behavior and providing new suggestions for clinical treatment. The basic viral infection model presented in [1] has focused on modeling the interaction between three main compartments, uninfected cells, infected cells and free virus particles. Cytotoxic T Lymphocyte (CTL) cells and antibodies play central role of controlling the viral progression. CTL cells attack and kill the infected cells. The B cell produces antibodies to neutralize the viruses. Wodarz [2] has presented a viral infection model with both CTL and antibody immune responses. The model presented in [2] is based on the assumption that the uninfected cells becomes infected by contacting with the virus (virus-to-cell transmission). However, it has been reported in [3] that the uninfected cells can also become infected when it contacts an infected cell (cell-to-cell transmission).

In this paper, we propose and analyze the effect of CTL and antibody immune responses on the virus dynamics with both virus-to-cell and cell-to-cell transmissions. The infection rate is given by Holling-type incidence. We first show that the model is biologically acceptable by showing that the solutions of the model are nonnegative and bounded. We find the steady states of the model and investigate their global stability analysis. We derive five threshold parameters which fully determine the existence and stability of the five steady states of the model. The global stability of all steady states of the model is proven using Lyapunov method and applying LaSalle’s invariance principle, we established the global asymptotic stability of the steady states of the model. To support our theoretical results we have performed some numerical simulations for the model. The results show the effect of the CTL and antibody immune response in controlling the disease and in removing the virus from the body.

References

Global stability of latent Chikungunya virus dynamics model with multitarget cells and discrete time delays

Ahmed M. Elaiw, Taofeek O. Alade and Saud M. Alsulami

Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
E-mail: taofeekalade@gmail.com

Abstract

Chikungunya virus (CHIKV) is an alphavirus which is transmitted to humans by Aedes aegypti and Aedes albopictus mosquitoes. The CHIKV attacks the target cells and causes Chikungunya fever with symptoms such as rashes, headache and fever. Symptoms usually occur after an incubation period of 4-7 days. CHIKV has been an outbreak in the last decade in some parts of the world and has increased the population of people at risk [1]. Although CHIKV pathogenesis in humans is not yet completely understood, but recent outbreaks have provided deep understanding into the organs and cells involved in the viral replication. CHIKV infects and replicates in a variety of cells, such as fibroblasts, macrophages, monocytes, skeletal muscle satellite cells and other skin cells [2]. In the literature of CHIKV infection, most of the mathematical models presented described the disease transmission in mosquito and human populations [3-5]. This paper proposes a latent Chikungunya viral infection model with multitarget cells. The model incorporates (i) two types of infected cells, latently infected cells and actively infected cells which produce the CHIKV particles (ii) saturated incidence rate which is suitable to model the nonlinear dynamics of the CHIKV especially when its concentration is high (iii) antibody immune response. The model is an (3n+2)-dimensional system of nonlinear delay differential equations (DDEs) that describes the population dynamics of CHIKV, n categories of uninfected target cells, n categories of latently and actively infected cells. The model is incorporated by intracellular discrete time delays. The qualitative behavior of the model is studied. Using the method of Lyapunov function, we established the global stability of the equilibria of the model. The effect of the time delay on the stability of the equilibria has also been illustrated by numerical simulations.

Keywords: Global stability; Chikungunya virus infection; Time delays; Multitarget cells; Lyapunov function

References

Release of Breeding Suppression Advanced Time Delay Predator-Prey Dynamics

Qamar, J. A. Khan and Fatma A. Al-kharousi

Department of Mathematics, Sultan Qaboos University, Muscat, Oman
E-mail: qjalil@squ.edu.om

Abstract
This paper presents a theoretical model where prey, due to short term heavy predation pressure, temporarily suppress breeding and restart breeding when in future predation pressure lowers. The predator consumes both suppressor and breeder of the prey and this prey population is more prone to predation at higher densities. Equilibrium and stability analysis are carried out. Taking fraction of new born breeder prey, q as a bifurcation parameter it is shown that Hopf bifurcation could occur.

Keywords: Prey-predator, Time delay model, Equilibrium points, Stability analysis, Hopf bifurcation
Dynamics of visceral leishmaniasis model with time delays

Velmurugan Gandhi, Ibrahim Elmojtaba and Nasser Al Salti

Department of Mathematics, Sultan Qaboos University, Muscat, Oman
E-mail: velmurugan@squ.edu.om

Abstract

In this work, authors discuss some of the dynamical characteristics of visceral leishmaniasis model with time delays. First, we propose a mathematical model for visceral leishmaniasis disease with time delay. Then, by analyzing the characteristic equations, some sufficient conditions are derived to ensure the stability of equilibrium points (disease-free equilibrium and endemic equilibrium) for the considered delayed visceral leishmaniasis model. Moreover, the time delay is taken as bifurcation parameter and establish some sufficient criteria to show the existence of Hopf bifurcation of the considered model. Finally, some numerical simulations are given to show the effectiveness of our theoretical results.

Key words: Endemic diseases, Leishmaniasis model with delay, Equilibrium points, Stability analysis, Bifurcation analysis, Numerical simulations.
SIR Model with Time-Varying Contact Rate

Fatma Al-Musalhi, Nasser Al-Salti, Ibrahim Elmojtaba, Velmurugan Gandhi

Department of Mathematics, Sultan Qaboos University, Muscat, Oman
E-mail: Fatma.almusalhi@outlook.com

Abstract

The contact rate is defined as the average number of contacts adequate for disease transmission by an individual per unit time and it is almost always assumed to be constant in time. However, in reality, the contact rate is not always constant throughout the year due to different factors such as population behaviour, environmental factors and many others. Therefore, it is more realistic to consider it to be a function of time.

In this talk, an SIR model with time-varying contact rate is considered. The existence and local stability of the equilibria of the model are analyzed. Results on global stability of disease-free equilibrium and transcritical bifurcation are proved. Finally, numerical simulations are presented to illustrate the theoretical results and to demonstrate the effect of the model parameters related to the contact rate on the behaviour of the solutions.

Key words: Endemic diseases, SIR model, Equilibrium points, Bifurcation analysis, Global stability, Numerical simulations.
Mathematical Analysis for the Dynamics of an Enteric Disease Model

Shaima Al Shanfari, Ibrahim M. Elmojtaba and Nasser Al Salti

Department of Mathematics, Sultan Qaboos University, Muscat, Oman
E-mail: s53774@student.squ.edu.om

Abstract

Enteric diseases range from mild food poisoning to dangerous infections like typhoid fever and cholera. Enteric and diarrheal diseases kill about 500,000 children under 5 each year, and those who survive face repeated infections by gut pathogens in the early years of their life, which can lead to serious, lifelong health problems. There are many challenges associated with modelling of enteric diseases. However, the most important are their indirect transmission mode and the role of mechanical vectors in the transmission circle. The aim of this research is to propose a new model to overcome those challenges. The model will be analyzed and all of its properties will be shown both analytically and numerically.

Key words: Enetric disease, Equilibrium points, Bifurcation analysis, Global stability, Optimal control, Numerical simulations
Prey-Predator Models with Variable carrying capacity

Maryam Al-Maqbali, Nasser Al-Salti and Ibrahim Elmojtaba

Department of Mathematics, Sultan Qaboos University, Muscat, Oman
E-mail: maryamalmoqbalix@gmail.com

Abstract

Prey-predator models with variable carrying capacity are proposed. These models are more realistic in modelling population dynamics in an environment that undergoes changes. In particular, prey-predator models with Holling type I and type II functional responses, incorporating the idea of a variable carrying capacity are considered. The carrying capacity was modelled by a logistic equation that increases sigmoidally between an initial value k_0, i.e. the initial value of the carrying capacity, which lies between a lower value k_1 and a final value $k_1 + k_2$, where k_2 is the range on which the carrying capacity is changing. In order to examine the effect of the variable carrying capacity on the prey-predator dynamics, the two models were analyzed qualitatively using stability analysis and numerical solutions for the prey and the predator population densities were also obtained. Results on global stability and Hopf bifurcation of certain equilibrium points have been also presented. The effect of other model parameters on the prey-predator dynamics has been also examined. In particular, results on the effect of handling parameter and the predator’s death rate, which has been to be the bifurcation parameter were presented.

Key words: Prey-predator, variable carrying capacity, Limit cycle, Hopf bifurcation
Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects

B. Sundaravadivoo

Department of Mathematics, Alagappa University, Karaikudi-630 004, India

E-mail: sundaravadivoo@gmail.com

Abstract

This manuscript prospects the controllability criteria of non-instantaneous impulsive nonlinear fractional differential systems with state delay. By enrolling an appropriate Grammian matrix which is often defined by the Mittag-Leffler function and with the assistance of Laplace transform, the conditions to obtain the necessary and sufficient for the controllability of non-instantaneous impulsive fractional differential systems with state delay are derived using algebraic approach. An important feature presents in the paper is that, taken non-instantaneous impulses into the fractional order dynamical system with state delay and studied the controllability analysis, since this not exists in the available source of literature. Inclusively, two illustrative examples are provided with the existence of state delay non-instantaneous impulse fractional dynamical system. So this demonstrates the validity and efficacy of the obtained criteria of the main section.
On the asymptotic stability and boundedness of solutions stochastic differential equations with multiple time lags

Cemil Tunç¹ and Osman Tunç²

¹² Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yil University 65080, Van-Turkey
cemtunc@yahoo.com (* Corresponding author: Cemil Tunç)

Abstract

In this paper, we consider a class of stochastic non-linear differential equations of second order with multiple delays. We establish new sufficient conditions which guarantee stochastic stability, stochastic asymptotic stability of the zero solutions and boundedness of all solutions of the considered stochastic delay differential equations. The technique of the proof is based on the construction of suitable Lyapunov functionals. The results of this paper extend and improve some recent results that can be found literature on the subject, and they are new and have novelty. As an application of the obtained results, in the particular case, an example is given for illustrations by using MATLAB-Simulink.

References

On the uniform asymptotic stability, integrability and boundedness of solutions of Volterra integro-differential equations with infinite delay

Osman Tunç1 and Cemil Tunç2*

2 Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yil University, 65080, Van-Turkey
cemtunc@yahoo.com (* Corresponding author: Cemil Tunç)

Abstract

In this paper, two new Lyapunov functionals are defined. We apply that functionals to get sufficient conditions guaranteeing the asymptotic stability, uniform stability and boundedness of solutions of certain non-linear Volterra integro-differential equations of first order. The results obtained have improvements and extensions of the former the results that can found in literature. We give examples to show applicability of the results obtained and for illustrations. In the particular cases, using MATLAB-Simulink, it is clearly shown the behaviors of the orbits of the Volterra integro-differential equations considered.

References

Stability results and existence theorems for nonlinear delay-fractional differential equations with Φ_p-operator

Hasib Khan1,2, Cemil Tunç3, Aziz Khan4

1 College of Engineering Mechanics, Hohai University, Jiangsu, 211100, Nanjing PR., China
2 Department of Mathematics, Shaheed Benazir Bhutto University, Dir Upper, 18000, Khybar Pakhtunkhwa, Pakistan
3 Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yil University, 65080, Van-Turkey
4 Department of Mathematics, University of Peshawar, 25000, Peshawar, Khybar Pakhtunkhwa, Pakistan

cemtunc@yahoo.com

Abstract

The study about delay-fractional differential equations (fractional DEs) have recently been got a great attention of scientists in many different subjects based on mathematically modeling. In the study of fractional DEs the first question raises is whether the problem will have a solution or not. Also, whether the problem is stable or not? In order to ensure the answer of these questions, we study the study existence and uniqueness of solutions (EUS) as well Hyers-Ulam stability for our proposed problem a nonlinear fractional DE with an operator Φ_p and a non zero delay $\tau > 0$ in Banach space \mathcal{Y} of order $n - 1 < \sigma, \beta \leq n, n \geq 3$, in the Caputo’s sense. The assumed singular fractional DE with Φ_p-operator is more general and complex than studied for stabilities by [3].

References

Bifurcation Analysis of a Delay differential Model of Predator-Prey System with Allee Effect

Hebatallah J. AlSakaji1 and Fathalla A. Rihan1

1 Department of Mathematical Sciences, College of Science, UAE University, Al Ain, UAE
heba.sakaji@uaeu.ac.ae & frihan@uaeu.ac.ae

Abstract

In recent years, a large number of mathematical models that described by delay differential equations (DDEs) have appeared in the life sciences. In this work, we discuss the dynamics and bifurcation analysis of three species delayed predator-prey model with competition among preys. The growth of both prey populations is subjected to the Allee effect in the logistic terms (the growth rate increases with the population density while it decreases at larger densities), and with discrete time-delay in the reaction terms. We study the existence of positive equilibrium points and their local and global asymptotic stability results. Bifurcation analysis in terms of time delay is investigated. The stable, periodic and chaotic behaviours of the model depending on parameter values. The presence of time-delay in the model improves the stability of the solutions and enriches the dynamics of the model. Numerical simulations are provided to illustrate the theoretical results.

Keywords: Allee effect; Bifurcation analysis; Functional response; Predator-prey model; Time-delay

References

MINIMUM ENERGY COMPENSATION FOR DISCRETE DELAYED SYSTEMS WITH DISTURBANCES

SALMA SOUHAILE AND LARBI AFIFI

Faculty of Sciences Ain Chock, University Hassan II, B.P.5366, Maârif, Casablanca, Morocco
souhaile.salma@gmail.com

Abstract

This work is devoted to the remediability problem for a class of discrete delayed systems. We investigate the possibility of reducing the disturbance effect with a convenient choice of the control operator. We give the main properties and characterization results of this concept, according to the delay and the observation. Then, under appropriate hypothesis, we demonstrate how to find the optimal control which ensures the compensation of a disturbance measured through the observation (measurements, signals,...). The discrete version of the wave equation as well as the usual actuators and sensors are examined. Numerical results are also presented.
A Reliable Method for First Order Delay Equation Based on Implicit Hybrid Method

Mohamed I Syam

Department of Mathematical Sciences, College of Science, UAE University, Al Ain 15551, UAE
Email: m.syam@uaeu.ac.ae

Abstract

In this paper, a reliable method for solving first order delay problem based on the implicit hybrid method. Theoretical results are investigated. Some of our numerical examples are presented to show the efficiency of the proposed method.
Partial Delay Differential Equations Associated with Quantum Quadratic Stochastic Processes

Farrukh Mukhamedov

Department of Mathematical Sciences, College of Science, UAE University, Al Ain 15551, UAE
Email: farruh.m@uaeu.ac.ae

Abstract

It is known that the study of many physical systems are modeled by Markov processes, but there are also systems which can not be described by such kind of processes. One of the possible processes is so called quantum quadratic stochastic processes (QQSP). Note that this process is closely connected with quadratic operators as well as Markov processes with linear operators. In the talk we discuss delay differential equations associated with QQSP which are considered as analogues of well-known Kolmogorov-Chapman equation for Markov processes.
Dynamics of Stochastic Tuberculosis Epidemic Model with Endogenous Reactivation and Exogenous Reinfections

Rajivganthi Chinnathambi & Fathalla A. Rihan

1 Department of Mathematical Sciences, College of Science, UAE University, Al Ain, UAE
Email: rajivganthic@uaeu.ac.ae

Abstract

In this work, we consider a class of stochastic tuberculosis epidemic model with endogenous reactivation and exogenous reinfections. Based on stochastic Lyapunov function, we derive a new sufficient conditions for the existence and uniqueness of an ergodic stationary distribution to the model. Then we obtain the sufficient conditions for extinction of the disease. Finally, some numerical simulations are given to verify the theoretical results.
Mathematical modeling of the intrinsic and extrinsic incubation Period of the Zika Virus Infection

Abdessamad Tridane

1 Department of Mathematical Sciences, College of Science, UAE University, Al Ain, UAE
Email: a-tridane@uaeu.ac.ae

Abstract

The aim of this work is to investigate incubation period, via delay differential equation, of the Zika virus disease (ZIKV). This incubation period could be extrinsic, which means the interval between the vector getting the agent and the vector’s ability to transmit the virus to a new hosts, or intrinsic, define as the time taken by the virus to complete its development in the host. In this model we discuss the effect of each delay on the development of the disease and also studied stability of the free disease equilibrium and the endemic equilibrium by estimating the basic reproduction number. We also propose sensitivity analysis of model with respect of the parameters of the model.

References

List of Participants

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Md. Abdul Malique, 11</td>
<td>amalique@uohb.edu.sa</td>
<td>Univ. of Hafr Al Batin, Saudi Arabia</td>
</tr>
<tr>
<td>Ephraim Agyingi, 8</td>
<td>eoasma@rit.edu</td>
<td>Rochester University, USA</td>
</tr>
<tr>
<td>Haydar Akca, 12</td>
<td>Haydar.Akca@adu.ac.ae</td>
<td>Abu Dhabi University, UAE</td>
</tr>
<tr>
<td>Hebatallah J. Alsakaji, 28</td>
<td>heba.sakaji@uae.ac</td>
<td>UAE University, UAE</td>
</tr>
<tr>
<td>Nasser Al-Salti, 20, 21, 22</td>
<td>nalsalti@squ.edu.om</td>
<td>SQU, Oman</td>
</tr>
<tr>
<td>Shima Al-Shanfari, 22</td>
<td>s53774@student.squ.edu.om</td>
<td>SQU, Oman</td>
</tr>
<tr>
<td>Maryam Al Maqbal, 23</td>
<td>maryamalmoqbalix@gmail.com</td>
<td>SQU, Oman</td>
</tr>
<tr>
<td>Maryam Al Yahyai</td>
<td>alyahyai44@hotmail.com</td>
<td>SQU, Oman</td>
</tr>
<tr>
<td>Mohamed N. Anwar, 14</td>
<td>mohamed.naeem@pua.edu.eg</td>
<td>Pharos University, Egypt</td>
</tr>
<tr>
<td>Fatma Al-Musalhi</td>
<td>Fatma.almusalhi@outlook.com</td>
<td>SQU, Oman</td>
</tr>
<tr>
<td>Seham Almekhlafi, 9</td>
<td>smdk100@gmail.com</td>
<td>Sana’a University, Yemen</td>
</tr>
<tr>
<td>Taofeek Alade, 18</td>
<td>taofeekalade@gmail.com</td>
<td>King Abdulaziz Univ., Saudi Arabia</td>
</tr>
<tr>
<td>Gennady Bocharov, 3</td>
<td>bocharov@m.inm.ras.ru</td>
<td>Russian Academy of Sciences, Russia</td>
</tr>
<tr>
<td>Omar Bazighifan, 13</td>
<td>o.bazighifan@gmail.com</td>
<td>Hadhramout University, Yemen</td>
</tr>
<tr>
<td>Rajiv Chinnathambi, 32</td>
<td>rajivganthic@uae.ac.ac</td>
<td>UAE University</td>
</tr>
<tr>
<td>Ibrahim Elmojtaba, 20, 21</td>
<td>elmojtaba@squ.edu.om</td>
<td>SQU, Oman</td>
</tr>
<tr>
<td>Abdelhai Elazzouzi, 16</td>
<td>abdelhai.elazzouzi@usmba.ac.ma</td>
<td>University of Moulay Ismail, Morocco</td>
</tr>
<tr>
<td>Velmurugan Gandhi, 20</td>
<td>velmurugan@squ.edu.om</td>
<td>SQU, Oman</td>
</tr>
<tr>
<td>Shafeek A. Ghaleb, 17</td>
<td>shafeeky.e2@gmail.com</td>
<td>King Abdulaziz Univ., Saudi Arabia</td>
</tr>
<tr>
<td>Qamar Khan, 19</td>
<td>qjalil@squ.edu.om</td>
<td>SQU, Oman</td>
</tr>
<tr>
<td>Yang Kuang, 4</td>
<td>kuang@asu.edu</td>
<td>Arizona State University, USA</td>
</tr>
<tr>
<td>Osama Moaaz, 13</td>
<td>o_.moaaz@mans.edu.eg</td>
<td>Mansoura University, Egypt</td>
</tr>
<tr>
<td>Farrukh Mukhamedov, 31</td>
<td>farrukhm@uae.ac.ac</td>
<td>UAE University</td>
</tr>
<tr>
<td>Rajan Rakkhiyappan, 10</td>
<td>rakkigr@u@gmail.com</td>
<td>Bharathi University, India</td>
</tr>
<tr>
<td>Fathalla A. Rihan, 6</td>
<td>frihan@uae.ac.ac</td>
<td>UAE University, UAE</td>
</tr>
<tr>
<td>Nasser Sweilam, 9</td>
<td>nsweilam@sci.edu.eg</td>
<td>Cairo University, Egypt</td>
</tr>
<tr>
<td>Salma Souhaile, 29</td>
<td>souhaile.salma@gmail.com</td>
<td>University Hassan II, Morocco</td>
</tr>
<tr>
<td>B. Sundaravadivoo, 24</td>
<td>sundaravadivoo@gmail.com</td>
<td>Alagappa University, India</td>
</tr>
<tr>
<td>Hongjiong Tian, 7</td>
<td>hjtian@shnu.edu.cn</td>
<td>Shanghai Normal University, China</td>
</tr>
<tr>
<td>Abdessamad Tridine, 33</td>
<td>a-tridine@uae.ac.ac</td>
<td>UAE University</td>
</tr>
<tr>
<td>Cemil Tunc, 25, 26, 27</td>
<td>cemtunc@yahoo.com</td>
<td>Yuzuncu Yil University Turkey</td>
</tr>
<tr>
<td>Mohammad I. Sysm, 30</td>
<td>m.syam@uae.ac.ac</td>
<td>UAE University</td>
</tr>
<tr>
<td>Radouane Yafia, 5</td>
<td>r.yafia@uiz.ac.ma</td>
<td>Ibn Zohr University, Morocco</td>
</tr>
<tr>
<td>Mustafa Yebrdi, 15</td>
<td>yebdri@yahoo.com</td>
<td>Abou Bakr Belkaid Univ., Algeria</td>
</tr>
</tbody>
</table>

©DDEs-TANTs